Flächenberechnung

Aus ibKastl Wiki

Unter Planimetrie versteht man allgemein metrische Problemstellungen der ebenen Geometrie, insbesondere die Flächeninhaltsberechnung in der Ebene. Der Flächeninhalt einfacher Flächen in der Ebene kann aus bekannten Längenwerten berechnet werden. Die Errechnung komplizierterer Flächen wird meist über Zerlegung in Flächenstücke, die sich leichter errechnen lassen, erreicht.

Quadrat

Quadrat Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=l^2\;}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U=4 \cdot l\;}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e= \sqrt{2} \cdot l\;}

Rechteck

Rechteck Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=l \cdot b\;}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U=2(l+b)\;}

Parallelogramm

Parallelogramm

Trapez

Trapez

Dreieck

Ungleichseitiges Dreieck

Ungleichseitiges Dreieck

Gleichseitiges Dreieck

Gleichseitiges Dreieck

Regelmäßiges Sechseck

Regelmäßiges Sechseck

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=l \sqrt{0,385 \cdot A}\;}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle SW=l \cdot \sqrt{3}\;}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle e=l \cdot 2\;}

Kreis

Vollkreis

Vollkreis Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\frac{d^2 \cdot \pi}{4}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=d^2 \cdot 0,785\;}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U=d \cdot \pi\;}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d=2 \cdot \sqrt{\frac{A}{\pi}}\;}

Kreisausschnitt (Sektor)

Kreisausschnitt Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\frac{d^2 \cdot \pi}{4 \cdot 360°} \cdot \alpha}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\frac{d \cdot b}{4}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha=\frac{360 \cdot b}{d \cdot \pi}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha=\frac{4 \cdot A \cdot 360}{d^2 \cdot \pi}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b=\frac{4 \cdot A}{d}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b=\frac{d \cdot \pi \cdot \alpha}{360}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d=\sqrt{\frac{360 \cdot A}{0,785 \cdot \alpha}}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d=\frac{d \cdot \pi \cdot \alpha}{360}}

Kreisabschnitt (Segment)

Kreisabschnitt Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\frac{h}{6 \cdot s} \cdot (3 \cdot h^2 + 4\cdot s^2)}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\frac{r \cdot (b-s) + s \dot h}{2}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h=r - \sqrt{r^2 - \frac{s^2}{4}}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r=\frac{\left(\frac{s}{2} \right)^2 + h^2 }{2 \cdot h}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s=2 \cdot \sqrt{r^2 - (r-h)^2}}

Kreisring

Kreisring Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=\frac{\pi}{4} \cdot (d_2^2 - d_1^2)}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_1=\sqrt{d_2^2 - \frac{4 \cdot A}{\pi}}}

Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d_2=\sqrt{\frac{4 \cdot A}{\pi} + d_1^2}}

Elipse

Elipse Fehler beim Parsen (SVG mit PNG-Fallback (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=d_1 \cdot d_2 \cdot \frac{\pi}{4}}

Siehe auch

Volumenberechnung

Weblinks